THE EVOLUTION OF AUTOMATION

PROF. GUY ANDRÉ BOY

THIS LECTURE IS THE FIRST OF A SERIES OF FOUR...

- In this first lecture, automation will be described as departing from a single-agent perspective
 This will be historical... showing how we automated and further designed aircraft during the last half century...
- My second lecture will be devoted to the human role in large complex systems
 Automation will then be described from a multi-agent perspective
- My third lecture will be focusing on problem-solving support (FlexTech)
 How to shift from rigid automation to flexible autonomy in unexpected situations?
- In the fourth lecture, I will illustrate the various ways of automating systems using industrial projects
- This evolutionary series of lectures will try to explain the genesis of Human Systems Integration (HSI)

OUTLINE

- Cockpit automation evolution
- Analysis of a few accidents
- Cognitive function analysis
- Human factors associated with automation: human error issues
- Regulatory solutions...
- Human-centered design and automation

AERONAUTICAL EVOLUTION

Farman F60 Goliath (1919)

Armagnac SE 2010 (1949)

Dewoitine D31

The number of instruments increased...

Three main criteria...

- Safety
- Performance
- Comfort

AERONAUTICAL EVOLUTION

Caravelle (1955)

Concorde (1969)

Airbus 320, 330, 340

Airbus 380

NUMBER OF DISPLAYS IN COCKPITS

WE HAVE INCREMENTALLY INCREASED INFORMATION PROCESSING...

- To decrease workload, in particularly demanding flight phases
- To provide the right understandable information at the right time
- To enable pilots to react safer and more efficiently to situations
- To enable pilots to delegate tasks to automation (human-machine teaming)

 \rightarrow The pilot remains the master of the operations

However, there are various ways to proceed with automation...

A SOCIO-TECHNICAL SHIFT...

Signals Information Knowledge

Information Processing Multi-agent Delegation Cooperation Coordination

Situation Awareness <</p>

WHAT DO WE MEAN BY A SITUATION?

HOW THE VARIOUS SITUATIONS CAN BE LINKED?

AUTOMATION EVOLUTION: AN INTERPRETATION

Automation evolution and emergence of contributing disciplines (Rasmussen's model)

The 4-loop approach to ATM was first provided by Etienne Tarnowski at HCI-Aero'06, Seattle, USA

LOOP 2

Guidance automation

- Integrated and digital autopilot and autothrottle
- High level modes

The 4-loop approach to ATM was first provided by Etienne Tarnowski at HCI-Aero'06, Seattle, USA

The 4-loop approach to ATM was first provided by Etienne Tarnowski at HCI-Aero'06, Seattle, USA

The 4-loop approach to ATM was first provided by Etienne Tarnowski at HCI-Aero'06, Seattle, USA

WHERE IS THE HUMAN THERE?

- We needed a representation that supports function allocation...
- Functions can be cognitive and physical... (cyber-physical systems and people)
- Functions can be logical [y=f(x)] and theleological [a function of an agent in an agency]
 - A function transforms a task into activity
 - A function has a role, a context of validity, and resources

COGNITIVE FUNCTION ANALYSIS

the entrol

GUY A. BOY

VOLUME 2 IN THE SERIES CONTEMPORARY STUDIES IN COGNITIVE SCIENCE AND TECHNOLOGY

THE COGNITIVE FUNCTION PARADIGM

AN EXAMPLE OF SHARED SITUATION AWARENESS

Ground

Aircraft

Same situation → 2 points of view Intersubjectivity Coordination

DISCUSSION: TCAS INTERLUDE

TCAS resolution : an interlude in the air-ground dialogue

Stress study, DSNA-LAA, 2006

ATM AGENTS AND INTERCONNECTIVITY...

THE USER INTERFACE: A CONCEPT OF 20TH CENTURY...

MY CAR WHEN I WAS A STUDENT

23

WHY IS HCD POSSIBLE TODAY?

HCD: Human Centered Design VHCD: Virtual HCD

ENGINEERING OF THE 21ST CENTURY

AI-2 & HCI & VHCD & Tangible Interactive Systems

Modeling & Simulation Connectivity Orchestration Data & Cognitive Science 3D Printing

From Software to Hardware

LIFE-CYCLED HUMAN SYSTEMS INTEGRATION

Technology-centered

HUMAN-CENTERED DESIGN OF A DIGITAL TWIN FOR HELICOPTER ENGINE MAINTENANCE

DIGITAL TWINS

Expanding HITLS

- During the whole life cycle
- "what if?"

Vivid documentation \rightarrow MBSE

- Integration of experience feedback
- Organizational memory

DTs as virtual assistants \rightarrow HMT

- Multi-agent collaboration
- Mediators for collaborative work

MBSE: Model-Based Systems Engineering HMT: Human Machine Teaming (where the machine is increasingly autonomous)

FROM MEANS TO PURPOSE

TANGIBILITY

- Physical vs. Figurative Tangibility
 - Grasping virtual things both physically and cognitively
 - Situation awareness at the center of Industry 4.0
- Virtual Prototyping and Human-In-The-Loop Simulation (HITLS)
 - Enabling Human-Centered Design (HCD)
 - Activity-based development
- From Purpose to Means instead of the usual opposite
 - The User Interface is a component of complex systems to be designed
 - Approach: Outside-In instead of Inside-Out
 - TOP Model (Technology-Organizations-People based concurrent design)

TANGIBILITY: SYSTEMIC ATTRIBUTES

- Complexity → separability, interconnectivity, collaboration, trust, ...
- Maturity \rightarrow TRLs & HRLs & ORLs
- Flexibility (design & operations) \rightarrow safety nodes, reversibility, FlexTech, ...
- Stability/Resilience \rightarrow passive vs. active, resilience, crisis management, ...
- Sustainability \rightarrow design rationale, knowledge management, ...

+ Social Factors

Shared situation awareness Cooperative decision-making Harmonized risk taking Trust and collaboration

MATURITY = READINESS LEVELS

TRL: Technology

© Guy A. Boy – The Evolution of Automation – 10 September 2024 – "New and Emerging Aviation Technologies" (NEAT) – FAA

35

MATURITY = READINESS LEVELS

HRL: Human

HRL	Description
1	Relevant human capabilities, limitations, and basic human performance issues and risks identified
2	Human-focused concept of operations defined and human performance design principles established
3	Analyses of human operational, environmental, functional, cognitive, and physical needs completed, based on proof of concept
4	Modeling, part-task testing, and trade studies of user interface design concepts completed
5	User evaluation of prototypes in mission-relevant simulations completed to inform design
6	Human-system interfaces fully matured as influenced by human performance analyses, metrics, prototyping, and high-fidelity simulations
7	Human-system interfaces fully tested and verified in operational environment with system hardware and software and representative users
8	Total human-system performance fully tested, validated, and approved in mission operations, using completed system hardware and software and representative users
9	System successfully used in operations across the operational envelope with systematic monitoring of human-system performance

MATURITY = READINESS LEVELS

ORL: Organization

ORL-0	First principles where potential organizational models are explored.
ORL-1	Goal-oriented research that requires making choices from first principles to practical fully digital organizational setups
ORL-2	Proof of principle development, and active R&D is started in a virtual environment
ORL-3	Virtual agile organizational prototype development and first HITLS (virtual HCD)
ORL-4	Proof of organizational concept development using concrete scenario-based design from fully virtual to more tangible environments
ORL-5	Assessing organization capability in terms of authority sharing (responsibility, accountability and control), trust, collaboration and coordination, for example
ORL-6	Real-world use-case tests in a wider variety of situations - tangibilization continues
ORL-7	Practical integration with respect to criteria such as safety, efficiency and comfort, at various levels of granularity of the organization – tangibilization continues
ORL-8	Readiness for effective implementation on a real site (fully tangible) based on personnel feedback for deployment approval
ORL-9	Deployment involving both personnel and real machines

© Guy A. Boy – The Evolution of Automation – 10 September 2024 – "New and Emerging Aviation Technologies" (NEAT) – FAA

37

MATURITY = INCREMENTAL ADAPTATION

- Adaptation of Technology
- Adaptation of the Organization
- Adaptation of People

Human Centered Design

Technology

Organizations

© Guy A. Boy – The Evolution of Automation – 10 September 2024 – "New and Emerging Aviation Technologies" (NEAT) – FAA

38

NO ADAPTATION WITHOUT RISK

Risk taking and management...

- Legal and operational
- Psychology and law
- Preparation of risky operations
- Responsibility
- Individual and collective risks
- Organizational risks

NOW, WE NEED A METHOD...

- The next two lectures will be devoted to methods
- Next time, I will present the PRODEC method that supports Human Systems Integration (HSI)
- This method cannot be used without a deeper understanding of what HSI is about!
- HSI will then be further presented and discussed during the next lectures...

REFERENCES FOR THIS LECTURE

- Cognitive Function Analysis
- The Handbook of Human-Machine Interaction
- Orchestrating Human Centered Design
- Human Systems Integration
- ... be curious!

THANK YOU FOR YOUR ATTENTION...

I am open to questions...